3.132 \(\int \sin ^n(e+f x) (1+\sin (e+f x))^m \, dx\)

Optimal. Leaf size=71 \[ -\frac{2^{m+\frac{1}{2}} \cos (e+f x) F_1\left (\frac{1}{2};-n,\frac{1}{2}-m;\frac{3}{2};1-\sin (e+f x),\frac{1}{2} (1-\sin (e+f x))\right )}{f \sqrt{\sin (e+f x)+1}} \]

[Out]

-((2^(1/2 + m)*AppellF1[1/2, -n, 1/2 - m, 3/2, 1 - Sin[e + f*x], (1 - Sin[e + f*x])/2]*Cos[e + f*x])/(f*Sqrt[1
 + Sin[e + f*x]]))

________________________________________________________________________________________

Rubi [A]  time = 0.0599366, antiderivative size = 71, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {2785, 133} \[ -\frac{2^{m+\frac{1}{2}} \cos (e+f x) F_1\left (\frac{1}{2};-n,\frac{1}{2}-m;\frac{3}{2};1-\sin (e+f x),\frac{1}{2} (1-\sin (e+f x))\right )}{f \sqrt{\sin (e+f x)+1}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[e + f*x]^n*(1 + Sin[e + f*x])^m,x]

[Out]

-((2^(1/2 + m)*AppellF1[1/2, -n, 1/2 - m, 3/2, 1 - Sin[e + f*x], (1 - Sin[e + f*x])/2]*Cos[e + f*x])/(f*Sqrt[1
 + Sin[e + f*x]]))

Rule 2785

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Dist[(b*(d
/b)^n*Cos[e + f*x])/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]]), Subst[Int[((a - x)^n*(2*a - x)^(m -
 1/2))/Sqrt[x], x], x, a - b*Sin[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !In
tegerQ[m] && GtQ[a, 0] && GtQ[d/b, 0]

Rule 133

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(c^n*e^p*(b*x)^(m +
 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*x)/c), -((f*x)/e)])/(b*(m + 1)), x] /; FreeQ[{b, c, d, e, f, m, n, p},
 x] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])

Rubi steps

\begin{align*} \int \sin ^n(e+f x) (1+\sin (e+f x))^m \, dx &=-\frac{\cos (e+f x) \operatorname{Subst}\left (\int \frac{(1-x)^n (2-x)^{-\frac{1}{2}+m}}{\sqrt{x}} \, dx,x,1-\sin (e+f x)\right )}{f \sqrt{1-\sin (e+f x)} \sqrt{1+\sin (e+f x)}}\\ &=-\frac{2^{\frac{1}{2}+m} F_1\left (\frac{1}{2};-n,\frac{1}{2}-m;\frac{3}{2};1-\sin (e+f x),\frac{1}{2} (1-\sin (e+f x))\right ) \cos (e+f x)}{f \sqrt{1+\sin (e+f x)}}\\ \end{align*}

Mathematica [B]  time = 14.8043, size = 2805, normalized size = 39.51 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sin[e + f*x]^n*(1 + Sin[e + f*x])^m,x]

[Out]

(-3*AppellF1[1/2, -n, 1 + m + n, 3/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2]*Cos[e + f*x]*Si
n[e + f*x]^(2*n)*(1 + Sin[e + f*x])^m)/(f*(Sec[(-e + Pi/2 - f*x)/2]^2)^m*(3*AppellF1[1/2, -n, 1 + m + n, 3/2,
Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2] - 2*(n*AppellF1[3/2, 1 - n, 1 + m + n, 5/2, Tan[(-e +
 Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2] + (1 + m + n)*AppellF1[3/2, -n, 2 + m + n, 5/2, Tan[(-e + Pi/2
 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2])*Tan[(-e + Pi/2 - f*x)/2]^2)*((-3*n*AppellF1[1/2, -n, 1 + m + n, 3/
2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2]*Cos[e + f*x]^2*Sin[e + f*x]^(-1 + n))/((Sec[(-e +
Pi/2 - f*x)/2]^2)^m*(3*AppellF1[1/2, -n, 1 + m + n, 3/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]
^2] - 2*(n*AppellF1[3/2, 1 - n, 1 + m + n, 5/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2] + (1
+ m + n)*AppellF1[3/2, -n, 2 + m + n, 5/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2])*Tan[(-e +
 Pi/2 - f*x)/2]^2)) + (3*AppellF1[1/2, -n, 1 + m + n, 3/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/
2]^2]*Sin[e + f*x]^(1 + n))/((Sec[(-e + Pi/2 - f*x)/2]^2)^m*(3*AppellF1[1/2, -n, 1 + m + n, 3/2, Tan[(-e + Pi/
2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2] - 2*(n*AppellF1[3/2, 1 - n, 1 + m + n, 5/2, Tan[(-e + Pi/2 - f*x)/
2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2] + (1 + m + n)*AppellF1[3/2, -n, 2 + m + n, 5/2, Tan[(-e + Pi/2 - f*x)/2]^2,
 -Tan[(-e + Pi/2 - f*x)/2]^2])*Tan[(-e + Pi/2 - f*x)/2]^2)) - (3*m*AppellF1[1/2, -n, 1 + m + n, 3/2, Tan[(-e +
 Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2]*Cos[e + f*x]*Sin[e + f*x]^n*Tan[(-e + Pi/2 - f*x)/2])/((Sec[(-
e + Pi/2 - f*x)/2]^2)^m*(3*AppellF1[1/2, -n, 1 + m + n, 3/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x
)/2]^2] - 2*(n*AppellF1[3/2, 1 - n, 1 + m + n, 5/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2] +
 (1 + m + n)*AppellF1[3/2, -n, 2 + m + n, 5/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2])*Tan[(
-e + Pi/2 - f*x)/2]^2)) + (3*Cos[e + f*x]*Sin[e + f*x]^n*(-(n*AppellF1[3/2, 1 - n, 1 + m + n, 5/2, Tan[(-e + P
i/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2]*Sec[(-e + Pi/2 - f*x)/2]^2*Tan[(-e + Pi/2 - f*x)/2])/3 - ((1 + m
 + n)*AppellF1[3/2, -n, 2 + m + n, 5/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2]*Sec[(-e + Pi/
2 - f*x)/2]^2*Tan[(-e + Pi/2 - f*x)/2])/3))/((Sec[(-e + Pi/2 - f*x)/2]^2)^m*(3*AppellF1[1/2, -n, 1 + m + n, 3/
2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2] - 2*(n*AppellF1[3/2, 1 - n, 1 + m + n, 5/2, Tan[(-
e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2] + (1 + m + n)*AppellF1[3/2, -n, 2 + m + n, 5/2, Tan[(-e + P
i/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2])*Tan[(-e + Pi/2 - f*x)/2]^2)) - (3*AppellF1[1/2, -n, 1 + m + n,
3/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2]*Cos[e + f*x]*Sin[e + f*x]^n*(-2*(n*AppellF1[3/2,
 1 - n, 1 + m + n, 5/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2] + (1 + m + n)*AppellF1[3/2, -
n, 2 + m + n, 5/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2])*Sec[(-e + Pi/2 - f*x)/2]^2*Tan[(-
e + Pi/2 - f*x)/2] + 3*(-(n*AppellF1[3/2, 1 - n, 1 + m + n, 5/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 -
 f*x)/2]^2]*Sec[(-e + Pi/2 - f*x)/2]^2*Tan[(-e + Pi/2 - f*x)/2])/3 - ((1 + m + n)*AppellF1[3/2, -n, 2 + m + n,
 5/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2]*Sec[(-e + Pi/2 - f*x)/2]^2*Tan[(-e + Pi/2 - f*x
)/2])/3) - 2*Tan[(-e + Pi/2 - f*x)/2]^2*(n*((-3*(1 + m + n)*AppellF1[5/2, 1 - n, 2 + m + n, 7/2, Tan[(-e + Pi/
2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2]*Sec[(-e + Pi/2 - f*x)/2]^2*Tan[(-e + Pi/2 - f*x)/2])/5 + (3*(1 - n
)*AppellF1[5/2, 2 - n, 1 + m + n, 7/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2]*Sec[(-e + Pi/2
 - f*x)/2]^2*Tan[(-e + Pi/2 - f*x)/2])/5) + (1 + m + n)*((-3*n*AppellF1[5/2, 1 - n, 2 + m + n, 7/2, Tan[(-e +
Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2]*Sec[(-e + Pi/2 - f*x)/2]^2*Tan[(-e + Pi/2 - f*x)/2])/5 - (3*(2
+ m + n)*AppellF1[5/2, -n, 3 + m + n, 7/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2]*Sec[(-e +
Pi/2 - f*x)/2]^2*Tan[(-e + Pi/2 - f*x)/2])/5))))/((Sec[(-e + Pi/2 - f*x)/2]^2)^m*(3*AppellF1[1/2, -n, 1 + m +
n, 3/2, Tan[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2] - 2*(n*AppellF1[3/2, 1 - n, 1 + m + n, 5/2, T
an[(-e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2] + (1 + m + n)*AppellF1[3/2, -n, 2 + m + n, 5/2, Tan[(-
e + Pi/2 - f*x)/2]^2, -Tan[(-e + Pi/2 - f*x)/2]^2])*Tan[(-e + Pi/2 - f*x)/2]^2)^2)))

________________________________________________________________________________________

Maple [F]  time = 0.547, size = 0, normalized size = 0. \begin{align*} \int \left ( \sin \left ( fx+e \right ) \right ) ^{n} \left ( 1+\sin \left ( fx+e \right ) \right ) ^{m}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^n*(1+sin(f*x+e))^m,x)

[Out]

int(sin(f*x+e)^n*(1+sin(f*x+e))^m,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (\sin \left (f x + e\right ) + 1\right )}^{m} \sin \left (f x + e\right )^{n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^n*(1+sin(f*x+e))^m,x, algorithm="maxima")

[Out]

integrate((sin(f*x + e) + 1)^m*sin(f*x + e)^n, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (\sin \left (f x + e\right ) + 1\right )}^{m} \sin \left (f x + e\right )^{n}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^n*(1+sin(f*x+e))^m,x, algorithm="fricas")

[Out]

integral((sin(f*x + e) + 1)^m*sin(f*x + e)^n, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (\sin{\left (e + f x \right )} + 1\right )^{m} \sin ^{n}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**n*(1+sin(f*x+e))**m,x)

[Out]

Integral((sin(e + f*x) + 1)**m*sin(e + f*x)**n, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (\sin \left (f x + e\right ) + 1\right )}^{m} \sin \left (f x + e\right )^{n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^n*(1+sin(f*x+e))^m,x, algorithm="giac")

[Out]

integrate((sin(f*x + e) + 1)^m*sin(f*x + e)^n, x)